Translating Programs into Delay-Insensitive Circuits

Jo C. Ebergen

Dept. of Computer Science and Mathematics
Eindhoven University of Technology
P.0O. Box 513, 5600 MB Eindhoven

1. INTRODUCTION

In 1938 Claude E. Shannon wrote his seminal paper [23] entitled ‘A Symbolic
Analysis of Relay and Switching Circuits’. He demonstrated that Boolean
algebra could be used elegantly in the design of switching circuits. The idea
was to specify a circuit by a set of Boolean equations, to manipulate these
equations by means of a calculus, and to realize this specification by a connec-
tion of basic elements. The result was that only a few basic elements, or even
one element such as the 2-input NAND gate, suffice to synthesize any switch-
ing function specified by a set of Boolean equations. Shannon’s idea proved to
be very fertile and out of it grew a complete theory, called switching theory,
which is used by most circuit designers nowadays.

In the thesis {5] a method is presented for designing delay-insensitive circuils.
(Operationally speaking, a delay-insensitive circuit is a connection of basic ele-
ments whose functional operation is insensitive to delays in wires or elements.)
The principal idea of this method is similar to that in Shannon’s paper: to
design a circuit as a connection of basic elements and to construct this connec-
tion with the aid of a formalism. The method of constructing such a circuit, as
described in [5], is by translating programs satisfying a certain syntax. The
result of such a translation is a delay-insensitive connection of elements chosen
from a finite set of basic elements. Moreover, this translation has the property
that the number of basic elements in the connection is proportional to the
length of the program. Furthermore, in [5] a rigorous formalization is given of
what it means for such a connection to be delay-insensitive.

In this pape:rl we briefly describe some of the history of designing delay-

1. The research reported in this paper was carried out while the author was working at CWI in
Amsterdam.

25



insensitive circuits and some of the reasons why we would like to design
delay-insensitive circuits. By means of an example we convey the idea of
designing delay-insensitive circuits. We conclude with an outline of the
method described in [5].

2. SOME HISTORY
Delay-insensitive circuits are a special type of circuits. We briefly describe
their origins and how they are related to other types of circuits and design
techniques. The most common distinction usually made between types of cir-
cuits is the distinction between synchronous circuits and asynchronous circuits.
Synchronous circuits are circuits that perform their (sequential) computa-
tions based on the successive pulses of the clock. From the time of the first
computer designs many designers have chosen to build a computer with syn-
chronous circuits. In [25] Alan Turing, one of the first computer designers, has
motivated this choice as follows:

We might say that the clock enables us to introduce a discreteness
into time, so that time for some purposes can be regarded as a suc-
cession of instants instead of a continuous flow. A digital machine
must essentially deal with discrete objects, and in the case of the
ACE (Automatic Computing Engine) this is made possible by the
use of a clock. All other digital computing machines except for
human and other brains that I know of do the same. One can
think up ways of avoiding it, but they are very awkward.

In the past fifty years many techniques for the design of synchronous cir-
cuits have been developed and are described by means of switching theory [11,
15]. The correctness of synchronous systems relies on the bounds of delays in
elements and wires. The satisfaction of these delay requirements cannot be
guaranteed under all circumstances, and for this reason problems can crop up
in the design of synchronous systems. (Some of these problems are described
in the next section.) In order to avoid these problems interest arose in the
design of circuits without a clock. Such circuits have generally been called
asynchronous circuits.

The design of asynchronous circuits has always been and still is a difficult
subject. Several techniques for the design of such circuits have been developed
and are discussed in, for example, [11, 15, 28]. For special types of such cir-
cuits formalizations and other design techniques have been proposed and dis-
cussed. David E. Muller has given a formalization of a type of circuits which
he coined by the name of speed-independent circuits. An account of this for-
malization is given in [16].

From a design discipline that was applied in the Macromodules project
[3, 4] at Washington University in St. Louis, the concept of a special type of
circuit evolved which was given the name delay-insensitive circuit. It was real-
ized that a proper formalization of this concept was needed in order to specify
and design such circuits in a well-defined manner. A formalization of the

26



concept of a delay-insensitive circuit was later given in [26]. For the design
and specification of delay-insensitive circuits several methods have been
developed based on, for example, Petri Nets and techniques derived from
switching theory [17].

Another name that is frequently used in the design of asynchronous circuits
is self-timed systems. This name was introduced by C. L. Seitz in [22] in order
to describe a method of system design without making any reference to timing
except in the design of the self-timed elements.

Recently, Alain Martin has proposed some interesting and promising design
techniques for circuits of which the functional operation is unaffected by
delays in elements or wires {12, 13]. His techniques are based on the compila-
tion of CSP-like programs into connections of basic elements. The techniques
presented in [5] exhibit a similarity with the techniques applied by Alain Mar-
tin.

3. WHY DELAY-INSENSITIVE CIRCUITS ?

The reasons for designing delay-insensitive systems are manifold. One reason
why there has always been an interest in asynchronous systems is that synchro-
nous systems tend to reflect a worst-case behavior, while asynchronous systems
tend to reflect an average-case behavior. A synchronous system is divided into
several parts, each of which performs a specific computation. At a certain
clock pulse, input data are sent to each of these parts and at the next clock
pulse the output data, ie. the results of the computations, are sampled and
sent to the next parts. The correct operation of such an organization is esta-
blished by making the clock period larger than the worst-case delay for any
subcomputation. Accordingly, this worst-case behavior may be disadvanta-
geous in comparison with the average-case behavior of asynchronous systems.

Another more important reason for designing delay-insensitive systems is the
so-called glitch phenomenon. A glitch is the occurrence of metastable behavior
in circuits. Any computer circuit that has a number of stable states also has
metastable states. When such a circuit gets into a metastable state, it can
remain there for an indefinite period of time before it resolves into a stable
state. For example, it may stay in the metastable state for a period larger than
the clock period. Consequently, when a glitch occurs in a synchronous system,
erroneous data may be sampled at the time of the clock pulses. In a delay-
insensitive system it does not matter whether a glitch occurs: the computation
is delayed until the metastable behavior has disappeared and the element has
resolved into a stable state. One frequent cause for glitches are, for example,
the asynchronous communications between independently clocked parts of a
system.

The first mention of the glitch problem appears to date back to 1952 (cf.
[1]). The first publication of experimental results of the glitch problem and a
broad recognition of the fundamental nature of the problem came only after
1973 {2, 8] due to the pioneering work on this phenomenon at the Washington
University in St. Lous.

A third reason is due to the effects of scaling. This phenomenon became

27



prominent with the advent of integrated circuit technology. Because of the
improvements of this technology, circuits could be made smaller and smaller.
It turned out, however, that if all characteristic dimensions of a circuit are
scaled down by a certain factor, including the clock period, delays in long
wires do not scale down proportional to the clock period [13, 21]. As a conse-
quence, some VLSI designs when scaled down may no longer work properly
anymore, because delays for some computations have become larger than the
clock period. Delay-insensitive systems do not have to suffer from this
phenomenon if the basic elements are chosen small enough so that the effects
of scaling are negligible with respect to the functional behavior of these ele-
ments [24].

A fourth reason is the clear separation between functional and physical
correctness concerns that can be applied in the design of delay-insensitive sys-
tems. The correctness of the behavior of basic elements is proved by means of
physical principles only. The correctness of the behavior of connections of
basic elements is proved by mathematical principles only. Thus, it is in the
design of the basic elements only that considerations with respect to delays in
wires play a role. In the design of a connection of basic elements no reference
to delays in wires or elements is made. This does not hold for synchronous
systems where the functional correctness of a circuit also depends on timing
considerations. For example, for a synchronous system one has to calculate
the worst-case delay for each part of the system and for any computation in
order to satisfy the requirement that this delay must be smaller than the clock
period.

As a last reason, we believe that the translation of parallel programs into
delay-insensitive circuits offers a number of advantages compared to the trans-
lation of parallel programs into synchronous systems. In [5] a method is
presented with which the synchronization and communication between parallel
parts of a system can be programmed and realized in a natural way.

4. AN EXAMPLE

In order to get an idea of designing delay-insensitive circuits we describe in an
informal way a small example. Consider the modulo-3 counter specified by
the following communication behavior. The modulo-3 counter has three com-
munication actions: one input, denoted by a?, and two outputs, denoted by p!
and ¢'. The communication behavior is an alternation of inputs and outputs,
starting with an input. The outputs depend on the inputs as follows. After
the n-th mput, where n>0, if n mod35~0, then output ¢! is produced, else
output p! is produced. This behavior is expressed in the following program, or
so-called command,

EOQ = prefla?qgta?qla?p!].

Here, [E] denotes repetition of the enclosed behavior E and E1;E2 denotes
concatenation of E'1 and E2. The notation pref E denotes the prefix-closure of
the behavior E, i.e. if the string of symbols (also called trace) a?q'a?q'a?p!
is a possible behavior of E, then also each prefix of this trace is a possible

28



behavior of pref E.

The following physical interpretation may be associated with the symbols.
With each symbol corresponds a terminal of the circuit and with each
occurrence of that symbol in a trace corresponds a voltage transition (either a
high-going or a low-going transition) in that terminal. Voltage transitions
corresponding to inputs are caused by the environment of the circuit; voltage
transitions corresponding to outputs are caused by the circuit itself.

In the same way the basic TOGGLE and XOR component can be specified
as given in Figure 1.

= by |
prefla?;btatic!] a?—-—<
L !
a? ¢!
pref(a?|b7);c!] b?:)E > -

FIGURE |1

The first component is the TOGGLE component and can be considered as a
modulo-2 counter. The second component is an XOR component and has the
following repetitive behavior. First, the environment provides either an input
a? or an input b? (the | separates the alternatives), and then the component
produces an output ¢!. After the environment has received an output c! it
may produce a new input again, and so on. (Notice that the behaviors of
components are specified as orderings of events instead of as logical functions.)

We emphasize that all specifications must be understood as prescriptions for
the behavior of the component and environment. Consequently, in construct-
ing a decomposition for the modulo-3 counter EQ we assume that the environ-
ment satisfies the prescribed behavior in E0, i.e. the environment provides new
inputs a? only when an output has been received. Under this assumption the
modulo-3 counter can be decomposed as depicted in Figure 2.

g

FIGURE 2

Notice that in the decomposition the prescription for the environment of
every basic component is not violated. Without much difficulty we can con-
vince ourselves that the functional behavior of this decomposition is unaffected
by delays in connection wires or in basic elements. In other words, we could
say that the modulo-3 counter is realized by a delay-insensitive connection of

29



basic elements. Knowing how to construct a modulo-3 counter the reader may
try, as an exercise, to construct a modulo-17 counter from TOGGLE and
XOR components. (There exist several solutions, some more efficient than
others.)

5. OUTLINE OF THE METHOD

The method presented in [5] for designing delay-insensitive circuits is briefly
described as follows. An abstraction of a circuit is called a component; com-
ponents are specified by programs written in a notation based on trace theory.
Trace theory was inspired by Hoare’s CSP {6, 7] and developed by a number
of people at the University of Technology in Eindhoven. It has proven to be a
good tool in reasoning about parallel computations [18, 19, 24, 9] and, in par-
ticular, about delay-insensitive circuits [10, 20, 21, 26, 27].

The programs are called commands and can be considered as an extension
of the notation for regular expressions. Any component represented by a com-
mand can also be represented by a regular expression, i.e. it is also a regular
component. The notation for commands, however, allows for a more concise
representation of a component due to the additional programming primitives
in this notation. These extra programming primitives include operations to
express parallelism, tail recursion (for representing finite state machines), and
projection (for introducing internal symbols).

Based on trace theory the concepts of decomposition of a component and of
delay-insensitivity are formalized. The decomposition of a component is
intended to represent the realization of that component by means of a connec-
tion of circuits. Several theorems are presented that are helpful in finding
decompositions of a component. Delay-insensitivity is formalized by the
definition of DI decomposition. A DI decomposition represents a realization of
a component by means of a delay-insensitive connection of circuits. In order
to link decomposition and DI decomposition, the definition of a DI com-
ponent is introduced. Operationally speaking a DI component represents a
circuit for which the communication between circuit and environment takes
place in a delay-insensitive way. (It turns out that the definition of a DI com-
ponent is equivalent with Udding’s formalization of a delay-insensitive circuit.)
By means of the definition of a DI component one of the fundamental
theorems in the thesis can be formulated as follows: DI decomposition and
decomposition are equivalent if all components involved are DI components.

This theorem is applied as follows to the example described in the previous
section. We showed, informally, that the modulo-3 counter can be decom-
posed into TOGGLE and XOR components. Furthermore, we have that the
TOGGLE component, XOR component, and modulo-3 counter £0 are DI
components. Consequently, it follows by the above mentioned theorem that
the decomposition of Figure 2 forms a DI decomposition of the modulo-3
counter.

Because of the above mentioned theorem, it is important to have techniques
to recognize DI components. For this purpose a number of so-called DI gram-
mars are developed, i.e. grammars for which any command generated by these

30



grammars represents a (regular) DI component.

Based on these grammars syntax-directed translations of commands into DI
decompositions of components represented by these commands are developed.
With these grammars the language £ of commands is defined. It is shown
that any regular DI component represented by a command in the language By
can be decomposed in a syntax-directed way into the finite set B of basic DI
components and so-called CAL components. CAL components are also DI
components. Consequently, since all components involved are DI components,
the decomposition into these components is, by the above theorem, also a DI
decomposition.

The set of all CAL components is, however, not finite. In order to show
that a decomposition into a finite basis of components exists, two decomposi-
tions of CAL components are discussed: one decomposition into the finite
basis BO and one decomposition into the finite basis B1. The decomposition
of CAL components into the basis BI is in general nor a DI decomposition,
since not every component in B1 is a DI component. This decomposition,
however, is in general simpler than the decomposition into B0 and can be
realized in a simple way if so-called isochronic forks are used in the realization.
The decomposition of CAL components into the basis BO is an interesting but
difficult subject. Since every component in BO is a DI component, every
decomposition into BO is therefore also a DI decomposition. In [5] a general
procedure for the decomposition of CAL components into the basis BO is
described, which is conjectured to be correct

The complete decomposition method can be described as a syntax-directed
translation of commands in £, into commands of the basic components in BO
or B1. Consequently, the decomposition method is a constructive method and
can be completely automated: as soon as we have a specification of a com-
ponent expressed as a command in £ we can find mechanically a decomposi-
tion of this component into BO or B1. Moreover, it is shown that the result of
the complete decomposition of any component expressed in £4 can be linear in
the length of the command, i.e. the number of basic elements in the resulting
connection is proportional to the length of the command.

Although many regular DI components can be expressed in the language £,
which is the starting point of the translation method, probably not every regu-
lar DI component can be expressed in this way. Nevertheless, it is also shown
that for any regular DI component there exists a decomposition into com-
ponents expressed in £, which can then be translated by the method
presented.

6. CONCLUDING REMARKS

The research described in [5] has been fascinating and many-sided. It

includes, for example, aspects of

- Language design: which programming primitives do we include in the
language in order to be able to present a clear and concise program for a
component?

- Programming methodology: do there exist techniques to design programs

31



from specifications for components in the language of commands?
Translation techniques: how do we translate programs into connections of
basic elements?

Syntax and semantics: how we can satisfy semantic properties (like a DI
component) by imposing syntactic requirements on programs?

VLSI design: what physical constraints must be met in order to realize the
circuit designs obtained in the VLSI medium?

In the thesis the aim of delay-insensitive design has been pursued as far as
possible, i.e. correctness arguments based on delay-assumptions have been
postponed as far as possible, in order to see what sort of designs such a pur-
suit would lead to. In this approach our first concern has been the correctness
of the designs and only in the second place have we addressed their efficiency.
Accordingly, although the number of basic components is already proportional
to the length of the program, still many optimizations are possible in translat-
ing programs into delay-insensitive circuits.

REFERENCES

1.

10.

11.
12.

T.J. CHANEY, A Comprehensive Bibliography on Synchronizers and Arbiters,
Technical Memorandum No. 306C, Institute for Biomedical Computing,
Washington University, St. Louis.

T.J. CHANEY, C.E. MOLNAR (1973). Anomalous behavior of synchronizer
and arbiter circuits. IEEE Transactions on Computers C-22, 421-422.
W.A. CLARK (1967). Macromodular computer systems. Proceedings of the
Spring Joint Computer Conference, AFIPS.

W.A. CLARK, C.E. MOLNAR (1974). Macromodular computer systems. R.
STACY, B. WAXMAN (eds.). Computers in Biomedical Research, Vol. 1V,
Academic Press, New York.

Jo C. EBERGEN (1987). Translating Programs into Delay-Insensitive Cir-
cuits, Ph. D. Thesis, Eindhoven University of Technology.

C.A.R. HOARE (1978). Communicating sequential processes. Communica-
tions of the ACM 21, 666-677.

C.A.R. HOARE (1985). Communicating Sequential Processes, Prentice-Hall.
M. HurtaDO (1975). Dynamic Structure and Performance of Asymptoti-
cally Bistable Systems, D. Sc. Dissertation, Washington University, St.
Louis.

ANNE KALDEWAD (1986). A Formalism for Concurrent Processes, Ph.D.
Thesis, Eindhoven University of Technology.

ANNE KALDEWAD (1987). The translation of processes into circuits. J.W.
DE BAKKER, A.J. NUMAN, P.C. TRELEAVEN (eds.). Proceedings PARLE,
Parallel Architectures and Languages Europe, Vol I, Springer LNCS, 195-
213.

Zv1 KoHAVI (1970). Switching and Finite Automata Theory, McGraw-Hill.
ALAIN J. MARTIN (1985). The design of a self-timed circuit for distri-
buted mutual exclusion. H. Fuchs (ed.). Proceedings 1985 Chapel Hill
Conference on VLSI, Computer Science Press, 247-260.

32



13.
14.
15.

16.
17.

18.

19.

20.

21.

22.
23.
24.

25.

26.
27.

28.

ALAIN J. MARTIN (1986). Compiling communicating processes mnto
delay-insensitive VLSI circuits. Distributed Computing 1, 226-234.

CARVER MEAD, MARTIN Rem (1982). Minimum propagation delays in
VLSI. IEEE Journal of Solid-State Circuits SC-17, 773-T75.

R.E. MILLER (1965). Switching Theory, Wiley.

R.E. MILLER, Chapter 10 in: [15].

C.E. MoLNAR, T.P. FanG, F.U. ROSENBERGER (1985). Synthesis of
delay-insensitive modules. H. Fuchs (ed.). Proceedings 1985 Chapel Hill
Conference on VLSI, Computer Science Press, 67-86.

MARTIN RiM (1985). Concurrent computations and VLSI circuits. M.
BRroy (eds.). Control Flow and Data Flow: Concepts of Distributed Com-
puting, Springer-Verlag, 399-437.

MARTIN Rem (1987). Trace theory and systolic computations. J.W. DE
BAKKER, A.J. NiMAN, P.C. TRELEAVEN (eds.). Proceedings PARLE,
Parallel Architectures and Languages Europe, Vol. I, Springer LNCS, 14-
34.

Huus M.J.L. ScHoLs (1985). A Formalisation of the Foam Rubber
Wrapper Principle, Master’s Thesis, Department of Mathematics and
Computing Science, Eindhoven University of Technology.

Huus M.J.L. ScHoLs, ToM VERHOEFF (1985). Delay-Insensitive Directed
Trace Structures Satisfy the Foam Rubber Wrapper Postulate, Computing
Science Notes 85/04, Department of Mathematics and Computing Sci-
ence, Eindhoven University of Technology.

C.L. Serrz (1980). System Timing. CARVER MEAD, LYNN CONWAY.
Introduction to VLSI Systems, Addison-Wesley, 218-262.

CLAUDE E. SHANNON (1938). A symbolic analysis of relay and switching
circuits. Trans. AIEE, 57, 713-723.

JAN L.A. VAN DE SNEPSCHEUT (1985). Trace Theory and VLSI Design,
LNCS 200, Springer-Verlag.

ALAN M. TURING (1986). Lecture to the London Mathematical Society
on 20 February 1947. B.E. CARPENTAR, R-W. DoRaAN (eds.). Charles
Babbage Institute Reprint Series for the History of Computing, Vol. 10, MIT
Press.

JAN TuoMeEN UDDING (1984). Classification and Composition of Delay-
Insensitive Circuits, Ph.D. Thesis, Eindhoven University of Technology.
JAN TuMEN UDDING (1986). A formal model for defining and classifying
delay-insensitive circuits and systems. Distributed Computing 1, 197-204.
S.H. UNGER (1969). Asynchronous Sequential Switching Circuits, Wiley
Interscience.

33



